

AIRS Data Assimilation at the Regional Scale

Brad Zavodsky & Will McCarty

University of Alabama in Huntsville Huntsville, Alabama

Shih-hung Chou, Gary Jedlovec, & Bill Lapenta

NASA / Marshall Space Flight Center Huntsville, Alabama

AIRS Science Team Meeting – March 2007

Outline

- SPoRT AIRS assimilation focuses on short-term regional forecasts—compliments work at JCSDA
- Profile Assimilation

- Lessons Learned from Case Study
- Analysis Impact (v4.13; GSFC)
- v4/v5 Profile Comparison w/ Rawinsonde (v4.0, v5.0; JPL)
- Near-Real-Time (NRT) Assimilation plans
- Radiance Assimilation
 - Determination of Uncontaminated Channels
 - Validation with MODIS/CloudSat

Motivation for Profile Assimilation at SPoRT

- AIRS profiles complement traditional upper-air observations in data sparse regions (e.g. ocean).
- Hyperspectral nature of AIRS sounder allows for highest vertical resolution of any current remote sensing system
- L2 profiles provide a data set to add information to initialize forecast models in data-void regions without running complex RTA within analysis
- What follows is an overview of work done with v4, some *preliminary* work with v5, and an overview of upcoming real-time work

Insights from Previous Case Study Work

- Short WRF forecast initialized with NAM used as background for ADAS analysis; 48-hour WRF forecasts for Nov. 2005 east coast storm
- AIRS profiles (v4.13) have a positive impact on the initial conditions of the model (next slide) but have varying results on regional forecasts with improvements at some forecast times at some levels
- AIRS impact on forecast depends on case study, use of QIs, assimilation time (model adjustment), and model resolution

Initial Assessment of V5 Profiles: Sept. 8, 2006

- Substantially more full, high quality retrievals over land (Midwest)
- Data removed mainly in cloudy regions
- V5 quality control adds data over land, near clouds, and above clouds

AIRS V5 PBest from JPL Focus Day

Impact of AIRS Profiles on Initial Conditions

Land Soundings (LandFrac ≥ 0.50)

Water Soundings (LandFrac = 0.0)

Real-Time Assimilation

- Single case studies are not necessarily representative (statistically significant) of overall model performance
- Looking to test sensitivity and feasibility (e.g. make future forecasts or initial conditions available to WFOs) of AIRS data in real time; not trying to run optimal operational configuration
 - · CNTL: control; use no AIRS data
 - AIRS: use QIs and error profile information to select only the highest quality data
- Use real time assimilation to select focus days for further study

Outline

- SPoRT AIRS assimilation focuses on short-term regional forecasts—compliments work at JCSDA
- Profile Assimilation
 - Lessons Learned from Case Study
 - Analysis Impact (v4.13; GSFC)
 - v4/v5 Profile Comparison w/ Rawinsonde (v4.0, v5.0; JPL)
 - Near-Real-Time (NRT) Assimilation plans
- Radiance Assimilation

- Determination of Uncontaminated Channels
- Validation with MODIS/CloudSat

Motivation for Radiance Assimilation at SPoRT

- Like profiles, radiances can be used to supplement rawinsondes in data sparse regions
- Traditional cloud detection approaches may be too conservative for mesoscale variability important for regional assimilation studies
- Additional cloud-free channels may add mesoscale detail
- Enhanced CO₂ sorting technique is applied to AIRS radiances to this end (Will McCarty, JCSDA)
- What follows is a brief description of this technique and some validation against MODIS and CloudSat observations

Determination of Usable Channels in IFOV2

- CO₂ sorting technique (Holz et al. 2006) adapted to distinguish between contaminated and uncontaminated radiances
- Clear spectrum generated using forward RT calculation; sorted with cloudy spectra by BT to determine separation point between clear and cloudy channels

• SPoRT sorting technique (left figure) compares well to the CO₂ slicing CTP (right figure)

MODIS CTP vs. AIRS Usable Channels (2006 Dec. 4)

MODIS CTP

Channels for Assimilation (%)

- Visible agreement is seen between the MODIS CTPs and AIRS usable channels
- Higher % of usable channels in clear regions, lower % as clouds get higher

AIRS/MODIS/CloudSat Intercomparison

Conclusions

- SPoRT AIRS assimilation focuses on short-term regional forecasts
- Profile Assimilation
 - Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional forecast models
 - Improvement in both T and q in over land soundings; smaller improvements in over water soundings
 - V5 profiles will be used for real time activities once on-line to generate longterm statistics of sensible parameters and find new case studies

Radiance Assimilation

• CO₂ Sorting technique can be used to detect clouds and determine uncontaminated channels in hyperspectral data with a substantial increase in usable channels over masking approach

